Команда ученых из Корейского института материаловедения (KIMS) разработала оптический сенсорный материал для обнаружения наркотиков в поте. Разработка обеспечит быстрое и надежное обнаружение наркотиков на месте с помощью носимого датчика.
Исследователи из Южной Кореи успешно разработали носимый датчик, который может обнаруживать запрещенные препараты в поте. Ученые использовали технологии наноматериалов, которые усиливают оптический сигнал.
Технология обеспечивает быстрое и высокочувствительное обнаружение наркотиков. Датчик прикрепляется к коже на определенный период времени, а затем она облучается светом для тестирования. Весь процесс займет всего одну минуту.
Традиционный процесс обнаружения наркотиков требует сложного метода извлечения подозреваемых компонентов лекарственного средства из биологических образцов, включая волосы, кровь и мочу, а затем анализ с помощью газовой или жидкостной хроматографии/масс-спектрометрии. Это занимает больше времени и требует большого помещения для прибора и квалифицированных специалистов. Хотя экспресс-наборы могут обнаруживать наркотики в моче, они выявляют только один компонент в одном тесте. Кроме того, они отличаются низкой чувствительностью.
В случае спортсменов проводится тестирование на антидопинговые препараты для выявления запрещенных веществ в крови и моче. Анализа крови часто избегают из-за опасений по поводу снижения спортивных результатов, а анализ мочи может нарушать права человека, поскольку специалист должен наблюдать за мочеиспусканием спортсмена. На крупных спортивных мероприятиях, таких как Олимпийские игры, сложно протестировать всех участников.
Исследователи сосредоточились на поте, который можно неагрессивно исследовать. Однако с ним выделяется лишь небольшое количество веществ, поэтому для лучшего обнаружения пришлось разработать высокочувствительную сенсорную технологию.
В высокочувствительном сенсорном датчике использовалась технология поверхностного комбинационного рассеяния, способная усилить комбинационный сигнал химических веществ в 1 000 раз и более. Поскольку сигнал комбинационного рассеяния света включает специфический сигнал молекул, интуитивная идентификация вещества возможна независимо от типа препарата.
Для разработки носимого оптический датчика исследователи обратили внимание на белок кокона, гибкий и пригодный для носки материал. Раствор фиброина, природного белка, экстрагировали из кокона тутового шелкопряда, чтобы получить пленку толщиной 160 нанометров (нм). Пленка покрыта серебряной нанопроволокой толщиной 250 нанометров (нм) и перенесена на медицинский пластырь, который можно прикрепить к коже.
Как только пластырь впитывает пот, лекарственное вещество, содержащееся в поте, проникает через носимый датчик и достигает серебряной нанопроволоки. Облучая пластырь рамановским лазером, лекарство можно обнаружить в реальном времени, не снимая датчик.
В Корее создали солнечную панель, которую можно свернуть в рулон
Корейские инженеры создали солнечные панели, которые можно свернуть в рулон или изогнуть так, как это требуется конструкцией. Это поможет не только упростить транспортировку подобных панелей, но и облегчить их внедрение в такие устройства, как автомобили, телефоны, и даже в одежду. О разработке пишет журнал Advanced Science.
Инженеры из Пусанского национального университета в Корее разработали прототип солнечных элементов, которые можно полностью складывать. В последние годы гибкие солнечные элементы находятся в тренде научных разработок. Обычно их делают из тонкопленочных материалов, таких как графен , диселенид вольфрама или селенид галлия, индия (CIGS), нанесенных на гибкие подложки — полимеры или даже бумагу. В результате получается солнечный элемент, который можно до некоторой степени сгибать.
Но пока они не могут полностью сложиться пополам, не сломавшись. Хотя многие электронные устройства уже освоили эту способность: например, смартфоны Samsung Galaxy Fold, которые могут открываться и закрываться, как книга.
«В отличие от просто гибкой электроники, складные устройства подвержены гораздо более жестким деформациям, с радиусом складывания всего 0,5 мм», — говорит профессор Иль Чон, автор исследования. — «Это невозможно с обычными ультратонкими стеклянными подложками и прозрачными проводниками из оксида металла, которые можно сделать гибкими, но никогда не складными».
Чтобы решить эту проблему, исследователи обратились к проводящим пленкам из однослойных углеродных нанотрубок. Они внедрили эту пленку на подложку, а затем легировали ее оксидом молибдена, чтобы улучшить ее проводимость.
Исследователи смогли сделать солнечный элемент толщиной всего 7 мкм, который мог складываться до радиуса всего 0,5 мм. Элемент смог выдержать без поломок более 10 000 циклов складывания. Они, конечно, также неплохо работали и как солнечные элементы, демонстрируя эффективность преобразования энергии 15,2% и прозрачность 80%.