Мировой системе здравоохранения удалось прийти к ежегодному снижению детской смертности
|
Международная группа ученых, в которую входят сотрудники лаборатории анализа показателей здоровья населения и цифровизации здравоохранения МФТИ, провела исследование динамики детской смертности с рождения до пяти лет в 204 странах в период с 2000 по 2019 год. Полученные данные позволяют оценить прогресс человечества по снижению смертности среди детей и младенцев и спрогнозировать возможные сценарии изменения этого показателя до 2030 года.
Результаты работы опубликованы в ведущем мировом научном журнале The Lancet. Согласно проведенным исследованиям, в 2019 году умерло 5,05 миллионов детей в возрасте до 5 лет, из которых 2,42 миллиона — в течение первого месяца жизни (неонатальная смертность).
В заявленных ООН Целях устойчивого развития к 2030 году заложено полное исчезновение случаев предотвратимой детской смертности во всем мире и снижение числа неонатальных смертей до менее чем 12 на 1000 живорождений, а смертей детей всех возрастов младше 5 лет — до менее чем 25 на 1000 живорождений (ЦУР 3.2).
На мировом уровне смертность с 2000 по 2019 годы среди детей до 5 лет снизилась почти в два раза с 71,2 до 37,1 на 1000 живорожденных, а неонатальная – с 28 до 17,9. Ученые прогнозируют, что к 2030 году 75 процентов стран смогут достигнуть заявленного ЦУР значения по снижению смертности до 5 лет и 68 процентов стран достигнут значения по неонатальной смертности.
Станислав Отставнов, руководитель лаборатории анализа показателей здоровья населения и цифровизации здравоохранения МФТИ (Цифромеда Физтеха), один из авторов исследования, пояснил: «Исследования позволяют считать возможным достижение значения смертности детей до 5 лет до 1,44 смертей на 1000 живорождений, причем значение неонатальной смертности удастся снизить до доли единицы (случаев)».
В России за эти годы абсолютная смертность детей до 5 лет снизилась на 56 процентов: в 2000 году было зафиксировано 25500 смертей, в 2015 — 15200, а в 2019 — 11200 (что соответствует 6,53 случая на 1000 живорождений). Из них на неонатальную смертность пришлось 12400 смертей в 2000 году, 7040 в 2015 году и 4990 в 2019 году, что на 60 процентов ниже, чем в начале периода, и соответствует трем смертям на 1000 живорождений.
К 2030 году авторы прогнозируют для России падение смертности среди новорожденных до трех случаев и до 5,04 случаев на 1000 живорождений среди детей до пяти лет. В абсолютных числах это достойный результат среди стран Восточной Европы и соответствует средним значениям снижения в этом регионе.
Правда, исследователи отмечают опасность роста детской смертности по итогам 2020-го и последующих лет, обусловленной пандемией COVID-19. При этом угрозу представляет не само заболевание коронавирусом, а целый спектр последствий пандемии: снижение качества и доступности медицинской помощи, потеря опекунов, сбой системы плановой вакцинации детей, а также другие причины социального и экономического характера.
Дети-CRISPR: когда мир будет к ним готов? (Nature, Великобритания)
Редактирование генов человеческого эмбриона может повлечь за собой непредвиденные последствия для здоровья людей и для всего общества. Поэтому, когда китайский ученый использовал этот метод в попытке сделать детей более устойчивыми к ВИЧ, многие поспешили осудить этот шаг как преждевременный и безответственный. Журнал «Нэйче» спросил у исследователей, что мешает считать эту процедуру приемлемым клиническим методом.
Попытки внести наследуемые изменения в геном человека вызывают неоднозначную реакцию. Вот что нужно сделать, чтобы эта техника стала безопасной и приемлемой.
Cпустя полгода после свадьбы Джефф Кэрролл и его жена решили не заводить детей. Кэрролл, 25-летний бывший капрал армии США, только что узнал, что у него есть мутация, вызывающая хорею Гентингтона, генетическое заболевание, которое разрушает мозг и нервную систему и неизменно приводит к преждевременной смерти. Около четырех лет назад болезнь выявили у его матери, а теперь он узнал, что и он тоже почти наверняка заболеет.
Столкнувшись с 50% вероятностью передать ту же мрачную судьбу своим детям, пара решила, что о детях не может быть и речи. «Мы просто закрыли эту тему», — говорит Кэрролл.
Еще в армии он начал изучать биологию в надежде лучше разобраться в своем заболевании. Он узнал, что существует такая процедура как предимплантационная генетическая диагностика, или ПГД. Кэрролл с женой могли практически исключить возможность передачи мутации благодаря оплодотворению in vitro (ЭКО) и диагностике эмбрионов. Они решили попытать удачи, и в 2006 году у них родились близнецы без мутации Гентингтона.
Сейчас Кэрролл работает исследователем в Университете Западного Вашингтона в Беллингхеме, где применяет другую технику, которая может помочь парам в его положении: геномное редактирование CRISPR. Он уже использовал этот мощный инструмент для изменения экспрессии гена, ответственного за болезнь Гентингтона, в клетках мыши. Поскольку хорею Гентингтона вызывает лишь один ген, а ее последствия настолько разрушительны, именно это заболевание часто приводят в качестве примера ситуации, в которой редактирование генов в человеческом эмбрионе — процедура, которая может вызвать изменения, наследуемые будущими поколениями, и потому противоречивая — может быть действительно оправданным. Но перспектива использования CRISPR для изменения этого гена у человеческих эмбрионов все еще беспокоит Кэрролла. «Это огромный рубеж, — говорит он. — Я понимаю, что люди хотят его поскорее перейти — и я в том числе. Но в этом вопросе нужно отбросить все амбиции». Процедура может повлечь за собой непредвиденные последствия для здоровья людей и для всего общества. По его словам, потребуются десятилетия исследований, прежде чем эта технология станет безопасной.
Общественное мнение о редактировании генов для предотвращения заболеваний в основном положительное. Но сдержанность Кэрролла разделяют многие ученые. Когда в прошлом году прогремела новость о том, что китайский биофизик использовал редактирование генома в попытке сделать детей более устойчивыми к ВИЧ, многие ученые поспешили осудить этот шаг как преждевременный и безответственный.
С тех пор несколько исследователей и научных обществ призвали ввести мораторий на редактирование наследуемого генома людей. Но такой мораторий поднимает важный вопрос, говорит эмбриолог Тони Перри (Tony Perry) из Университета Бата, Великобритания. «Когда его можно будет снять?— рассуждает он. — Какие условия нужно для этого выполнить?»
Журнал «Нэйче» (Nature) спросил у исследователей и других заинтересованных сторон, что именно мешает считать наследственное редактирование генов приемлемым клиническим методом. Некоторые научные проблемы, вероятно, можно преодолеть, но все же, чтобы метод был сертифицирован, вероятно, придется внести изменения в практику клинических испытаний, а также найти более широкий консенсус в отношении этой технологии.
Мимо мишени: сколько «ошибок» можно допустить?
Редактирование генома сопряжено со множеством технических сложностей, но больше всего внимания привлекает вероятность нежелательных генетических изменений, говорит Мартин Пера (Martin Pera), исследователь стволовых клеток в лаборатории Джексона в Бар-Харборе, штат Мэн. И все же, добавляет он, именно эту проблему, скорее всего, решить легче всего.
Самый популярный способ редактирования генов — система CRISPR-Cas9. Сам механизм позаимствован у некоторых бактерий, которые используют его для защиты от вирусов, разрезая ДНК с помощью фермента Cas9. Ученый может использовать фрагмент РНК, чтобы направить Cas9 к определенному участку в геноме. Однако, как оказалось, Cas9 и подобные ему ферменты режут ДНК и в других местах, особенно когда в геноме есть последовательности ДНК, похожие на нужную мишень. Такие «побочные» разрезы могут привести к проблемам со здоровьем: например, изменение гена, подавляющего рост опухолей, может привести к раку.
Исследователи попытались разработать альтернативы ферменту Cas9, которые могут быть менее предрасположены к ошибкам. Они также разработали версии Cas9, которые дают более низкий уровень ошибок.
Частота ошибок варьируется в зависимости от того, на какой участок генома нацелен фермент. Многие ферменты, редактирующие гены, были изучены только на мышах или человеческих клетках, выращенных в культуре, а не на человеческих эмбрионах. Частота ошибок может быть различной у клеток мыши и человека, а также у зрелых и эмбриональных клеток.
Число ошибок не обязательно должно быть равно нулю. Небольшое количество изменений ДНК происходит естественным образом каждый раз, когда клетка делится. Некоторые говорят, что определенные фоновые изменения могут быть допустимыми, особенно если метод используется для предотвращения или лечения серьезного заболевания.
Некоторые исследователи считают уровень ошибок CRISPR и так достаточно низким, говорит Перри. "Но — и я думаю, что это довольно большое "но" — мы еще не разобрались как следует в специфике редактирования человеческих яйцеклеток и эмбрионов«, — считает он.
В мишень, но не так: насколько точным должно быть геномное редактирование?
Более серьезной проблемой, чем побочные эффекты, могут быть изменения ДНК, которые являются целевыми, но нежелательными. После того, как Cas9 или подобный фермент разрезает ДНК, клетке остается залечить рану. Но процессы восстановления клетки непредсказуемы.
Одной из форм восстановления, или репарации, ДНК является негомологичное присоединение концов, при котором удаляются некоторые буквы ДНК в месте разреза — этот процесс может быть полезен, если целью редактирования является отключение экспрессии мутантного гена.
Другая форма репарации, так называемая гомологичная репарация, позволяет исследователям переписать последовательность ДНК, предоставляя образец, который копируется в месте разреза. Ее можно использовать для коррекции такого заболевания, как муковисцидоз, который обычно вызывается делецией (выпадением участка хромосомы) в гене CFTR.
Оба процесса сложно контролировать. Делеции, вызванные негомологичным соединением концов, могут различаться по размеру, образуя разные последовательности ДНК. Гомологическое восстановление позволяет лучше контролировать процесс редактирования, но оно происходит гораздо реже, чем делеция, во многих типах клеток. Исследования на мышах могут сделать геномное редактирование CRISPR более точным и эффективным, чем сейчас, говорит Энди Гринфилд (Andy Greenfield), генетик из Института Харвелл (Harwell Institute) при Медицинском исследовательском совете Великобритании, который находится неподалеку от Оксфорда. Мыши дают большое потомство, и поэтому у исследователей есть много попыток, чтобы добиться удачного редактирования и избавиться от всех ошибок. Чего не скажешь о человеческих эмбрионах.
Пока не ясно, насколько эффективным будет направленное гомологическое восстановление у людей или даже как именно оно будет работать. В 2017 году одна группа ученых использовала CRISPR-Cas9 в эмбрионах человека для коррекции вариантов генов, связанных с сердечной недостаточностью. Эмбрионы не были имплантированы, но результаты показали, что модифицированные клетки использовали в качестве шаблона для восстановления ДНК геном матери, а не шаблон ДНК, предоставленный исследователями. Это может оказаться более надежным способом редактирования ДНК эмбрионов человека. Но с тех пор другие исследователи сообщали, что им не удалось повторить эти результаты. «Пока мы не вполне понимаем, как происходит репарация ДНК у эмбрионов — говорит Дженнифер Дудна (Jennifer Doudna,) молекулярный биолог из Калифорнийского университета в Беркли. — Нужно проделать большую работу с другими видами эмбрионов, для того чтобы разобраться хотя бы в базовых вещах».
Исследователи разрабатывают способы решения проблем, связанных с восстановлением ДНК. В двух докладах, опубликованных в июне, обсуждается система CRISPR, которая может вставлять ДНК в геном, не нарушая обе цепи, тем самым обходя зависимость от механизмов репарации ДНК. Если системы успешно пройдут дальнейшее тестирование, они могут позволить исследователям лучше контролировать процесс редактирования.
Другой подход заключается в использовании техники под названием базовое редактирование. В базовых редакторах находится отключенный Cas9 вместе с ферментом, который может преобразовывать одну букву ДНК в другую. Отключенный Cas9 направляет базовый редактор на участок генома, где он химическим способом напрямую изменяет ДНК, не разрезая ее. Исследования, опубликованные в апреле, показали, что некоторые из таких базовых редакторов также могут вносить непредусмотренные изменения, но работа по улучшению их точности продолжается.
«Базовое редактирование в настоящее время не соответствует нашим критериям, — говорит Мэтью Портьюс (Matthew Porteus), детский гематолог из Стэнфордского университета в Калифорнии. — Но вполне можно представить, что оно будет со временем становиться лучше».
Даже если бы прицельность и точность изменений во время редактирования генома были безупречными, все равно оставался бы вопрос о том, какие изменения в зародышевой линии человека могут быть безопасными. Журнал «Нэйче», продолжая беседы с учеными, рассказывает о проблемах с которыми сталкивается современное генное редактирование.
Желанные, но опасные: какие изменения в геноме безопасны?
Даже если бы прицельность и точность изменений во время редактирования генома были безупречными, все равно оставался бы вопрос о том, какие изменения в зародышевой линии человека могут быть безопасными. В 2017 году международное научное сообщество во главе с Национальной академией наук, биоинженерии и медицины США, определило условия, которые должны быть выполнены перед редактированием генома эмбриона человека, предназначенного для имплантации. Одно из таких условий гласит, что последовательность ДНК, полученная в результате редактирования, должна быть уже распространена в популяции и не нести в себе никакого известного риска заболевания.
Одно только это требование сделало бы наследственное редактирование генов у людей невозможным в ближайшем будущем, говорит Портьюс. Очень трудно не только предсказать точную последовательность, полученную при редактировании, но и с уверенностью сказать, что этот вариант не увеличит риск заболевания.
Например, некоторые мутации в гене PCSK связаны с более низким уровнем холестерина и, следовательно, снижают риск сердечных заболеваний. Этот ген иногда предлагают использовать для редактирования. Но лишь у некоторых людей есть эти защитные мутации, отмечает Портьюс. Те люди, которых мы знаем, здоровы, но исследователи не знают, сколько других людей с такой мутацией умерло.
Первой известной попыткой наследственного редактирования генов у людей была попытка отключить ген CCR5, который производит рецептор иммунных клеток, позволяющий ВИЧ инфицировать людей. Стоит уничтожить этот ген, и дети будут устойчивы к вирусу, рассуждал Цзянькуй Хе, который тогда работал в Южном научно-технологическом университете в Шэньчжэне, Китай. Он попытался создать мутацию CCR5, которая встречается у некоторых европейцев и связана с устойчивостью к ВИЧ. Однако исследование, проведенное на основе данных из британского биобанка (UK Biobank) и опубликованное в этом месяце показало, что делеция этого гена может также сократить продолжительность жизни.
Последствия использования некоторых вариантов генов также могут зависеть от окружающей среды и от других аллелей, присутствующих в геноме. Например, мутация CCR5 очень редко встречается среди китайского населения, а это вызывает опасения, что этот ген может быть важен для защиты от вирусов, с которыми люди чаще сталкиваются в Азии.
Все эти сложности могут затруднить редактирование наследуемых генов, отмечает Клетус Тандо Андо (Cletus Tandoh Andoh), биоэтик из университета Яунде в Камеруне. «Большинство исследований связи тех или иных генов с заболеваниями проводилось на европейцах», — говорит он. Чтобы начать применять редактирование наследуемого ДНК в Африке, сначала необходимо провести масштабные исследования генов и окружающей среды на африканском населении, утверждает он.
Лоскутные детки: как исследователи могут избежать мозаичности?
Иногда гены отличаются не только у разных людей в популяции, но и у разных клеток человека. С приходом дешевого и быстрого секвенирования генома оказалось, что это состояние, известное как мозаичность, или мозаицизм, встречается чаще, чем считалось ранее.
Мозаичность может создать проблемы для редактирования генов. В эмбрионе, подвергшемся коррекции гена, вызывающего болезнь Гентингтона, могут оказаться как исправленные, так и не исправленные клетки. Отразится ли это на здоровье получившегося в результате ребенка? Зависит от того, какие клетки будут отредактированы, а какие нет — это может быть очень трудно предсказать заранее.
Рудольф Джениш (Rudolf Jaenisch), специалист по стволовым клеткам из Института Уайтхеда в Кембридже, штат Массачусетс, сомневается, что исследователи когда-либо смогут исключить возможность мозаичности у эмбрионов. А методы анализа последовательности ДНК эмбриона основаны на том, что небольшое количество клеток отбирают для тестирования, а затем уничтожают. Исследователи не смогут проверить оставшиеся клетки. «Даже если вы поставите предимплантационный диагноз, — говорит он, — невозможно определить, насколько он точен».
Некоторые исследователи сообщают о введении механизма CRISPR-Cas9 в эмбрионы на очень ранних стадиях развития, когда они еще представляют собой всего лишь одну клетку. Такая техника позволяет избежать мозаичности, считают авторы исследования. Но это нужно будет проверить еще много раз, чтобы убедиться, говорит Перри.
Редактирование генома на столь ранней стадии развития создает новую проблему: на одноклеточной стадии нет способа отличить эмбрионы, которые несут генетическое заболевание, от остальных, предостерегает Джениш. «По определению вы будете производить вмешательство в здоровые эмбрионы, — говорит Джениш, — и подвергнете их ненужному риску».
Может ли определенная степень мозаичности быть допустимой? Зависит от заболевания, которое пытаются излечить, считает Кришану Саха (Krishanu Saha), биоинженер из Университета Висконсин-Мэдисон. «Если у нас окажется отредактировано 30% печени, а мы хотим вылечить, скажем, заболевание сетчатки, допустимо ли это?— говорит он. — Возможно, в некоторых случаях — да».
Пора все проверить: как должны проходить клинические испытания?
Пока ученым только предстоит преодолеть все эти технические сложности, и они сравнительно мало обсуждают вопрос о том, каким образом редактирование наследственного генома будет проверено в клинических испытаниях, и какие данные нужно собрать для того, чтобы метод мог перейти на этот уровень. Требования должны быть высокими, потому что изменения могут быть переданы будущим поколениям, говорит Гопин Фэн, (Guoping Feng) невролог из Массачусетского технологического института в Кембридже. «Это не такой побочный эффект, когда просто немного заурчало в животе, — говорит он. — Это навсегда».
Некоторые приводят в пример практику Управления по оплодотворению и эмбриологии человека Великобритании (HFEA), которое 14 лет анализировало данные животных и людей, прежде чем разрешило при определенных условиях использовать метод, который называется донорством митохондрий. Техника позволяет женщинам с болезнетворными мутациями в ДНК электростанций клетки — митохондрий — использовать митохондрии из яйцеклетки здорового донора во время ЭКО. Как и при редактировании генов, это может позволить родителям избежать передачи опасных мутаций. Все еще есть сомнения по поводу безопасности этой процедуры — некоторые страны, в том числе США, не разрешают ее проводить. Тем не менее, об этой методике было получено гораздо больше данных, чем сейчас у нас есть о редактировании CRISPR-Cas9 в эмбрионах, говорит Гринфилд, который входил в исследовательскую групп HFEA. (Прошло тридцать лет лабораторных исследований, прежде чем процедуру ЭКО начали применять для здоровой беременности.)
Клинические испытания на людях поставили бы множество новых проблем. Например, в течение какого времени нужно будет наблюдать за детьми с отредактированным геномом, прежде чем методику можно будет считать безопасной? Как исследователи будут отслеживать этих детей, чтобы выявлять последствия для следующих поколений? «Начнется полная неразбериха», — говорит Брайан Цвик (Bryan Cwik), биоэтик из Портлендского государственного университета, штат Орегон.
22 мая Национальная академия наук США, Национальная академия медицины США и Королевское общество Великобритании объявили о создании комиссии по изучению этих аспектов редактирования наследуемых генов. Цель группы — опубликовать отчет в следующем году. «Нам на самом деле необходимо разработать более глубокий набор критериев, — говорит Дудна. —Думаю, нам бы всем хотелось, чтобы это произошло еще раньше».
Главный вопрос: готов ли мир?
Несмотря на значительные научные трудности на пути редактирования наследуемых генов, вероятно, еще сложнее будут связанные с ним этические и социальные проблемы. Продолжаются съезды ученых, научные доклады и заявления об отношении к методике поступают из научных обществ по всему миру. В марте комиссия, созванная Всемирной организацией здравоохранения (ВОЗ), пришла к выводу, что в настоящее время безответственно вносить наследственные изменения в геном человека. Авторы, пишущие для журнала «Нэйче», призвали ввести глобальный мораторий, а члены Национальной академии наук США, Национальной академии медицины США и Королевского общества заявили, что «мы должны достичь широкого общественного консенсуса, прежде чем принимать какие-либо решения».
Достижение глобального консенсуса — непростая задача, ведь в настоящее время большинство собраний ученых проводилось в богатых западных странах. Кевал Кришан (Kewal Krishan), антрополог из Панджабского университета в Чандигархе, говорит, что, например, в Индии очень мало обсуждают редактирование наследуемой ДНК. Также и Андо отмечает, что в некоторых африканских культурах очень велико давление на женщин, которые не смогли родить детей, и они могут подвергнуться гонениям со стороны общества. Это может стимулировать спрос.
Спрос — совершенно другое дело. На данный момент люди с генетическими заболеваниями не поднимают большого шума, говорит Шарон Терри (Sharon Terry), президент и исполнительный директор благотворительной организации «Дженетик Элайенс» (Genetic Alliance) из Вашингтона, округ Колумбия. По ее словам, со временем первоначальный энтузиазм угас по мере обсуждения проблемы, а также после того, как защитники пациентов поняли, что этот метод лечения не является единственно возможным. Многие семьи, которые опасаются, что их генетические заболевания могут передаться детям, говорили ей, что на данный момент им достаточно было бы иметь возможность провести исследование своих эмбрионов на наличие мутаций. Но скрининг вряд ли является панацеей. Он не подходит для всех пар.
Такие решения — глубоко личные, говорит Эндрю Импарато (Andrew Imparato), исполнительный директор Ассоциации университетских центров по проблемам инвалидности в Силвер Спринг, штат Мэриленд. Например, некоторые члены сообщества глухих спокойно относятся к мысли о том, что у них могут родиться глухие дети, и могут быть обеспокоены тем, что с появлением способа удаления мутаций глухоты из генома их могут вынуждать пойти на этот шаг.
Согласно опросам общественного мнения, люди чаще всего поддерживают редактирование наследуемого генома, если доказано, что оно безопасно и применятся для лечения генетических заболеваний. Опрос, проведенный Королевским обществом в Великобритании, показал, что 83% участников высказались за изменение зародышевой линии в целях борьбы с неизлечимыми заболеваниями. Но многие четко провели границу дозволенного, когда их спросили о редактировании в целях «улучшения»: 60%, например, высказались против идеи использования редактирования наследуемого генома для улучшения интеллекта.
Многие ученые и специалисты по этике проводят подобное различие между изменением генома, например, в целях повышения улучшения физических данных или изменения цвета глаз, и лечением или профилактикой заболевания. И даже тогда идут споры о том, при каких заболеваниях оправданно применять такой подход. Смертельные заболевания, которые однозначно вызваны в основном генетическими причинами — такие как болезнь Гентингтона, которая почти неизбежно наступает при наличии мутации — чаще всего приводят в качестве примеров таких болезней. Но когда дело доходит до редактирования гена, такого как PCSK9, чтобы предотвратить высокий уровень холестерина и в перспективе предотвратить сердечные заболевания, все уже совсем не так однозначно, говорит Фэн. Портьюс надеется, что в конечном счете специалисты составят список заболеваний, при которых сочтут оправданными такое вмешательство, как редактирование наследуемых генов — так же как ПГД, которое сейчас поддерживает Великобритания.
Тем не менее, некоторые люди более спокойно относятся к мысли о том, что появится больше детей с отредактированными генами. В этом месяце российский ученый заявил о том, что заинтересован в реализации проекта по редактированию генов человеческих эмбрионов. А американская медиакомпания STAT сообщила в конце прошлого месяца, что клиника по лечению бесплодия в Дубае обратилась к Хэ за советом по редактированию генов вскоре после того, как он сделал свое заявление.
Абха Саксена (Abha Saxena), биоэтик из Женевского университета, Швейцария, и бывший советник ВОЗ, надеется, что совещания будут продолжены, даже если конечная цель достижения глобального консенсуса может оказаться недостижимой. «Будем ли мы когда-нибудь готовы? Трудно сказать, — говорит Саксена. — Но человечество всегда любило рисковать».